Biochemical and Ultrastructural Aspects of Ca2+ Transport by Mitochondria of the Hepatopancreas of the Blue Crab Callinectes Sapidus
نویسندگان
چکیده
Mitochondria isolated from the hepatopancreas of the blue crab Callinectes sapidus show up to 12-fold stimulation of respiration on addition of Ca(2+), which is accompanied by Ca(2+) accumulation (Ca(2+):site = 1.9) and H(+) ejection (H(+):Ca(2+) = 0.85). Sr(2+) and Mn(2+) are also accumulated; Mg(2+) is not. A strongly hypertonic medium (383 mosM), Mg(2+), and phosphate are required for maximal Ca(2+) uptake. Ca(2+) uptake takes precedence over oxidative phosphorylation of ADP for respiratory energy. Once Ca(2+) is accumulated by the crab mitochondria, it is stable and only very slowly released, even by uncoupling agents. ATP hydrolysis also supports Ca(2+) uptake. Respiration-inhibited crab hepatopancreas mitochondria show both high-affinity and low-affinity Ca(2+)-binding sites, which are inactive in the presence of uncoupling agents. Crab hepatopancreas mitochondria have an enormous capacity for accumulation of Ca(2+), up to 5,500 ng-atoms Ca(2+) per mg protein, with an equivalent amount of phosphate. Freshly isolated mitochondria contain very large amounts of Ca(2+), Mg(2+), phosphate, K(+), and Na(+); their high Ca(2+) content is a reflection of the vary large amount of extra-mitochondrial Ca(2+) in the whole tissue. Electron microscopy of crab mitochondria loaded with Ca(2+) and phosphate showed large electron-dense deposits, presumably of precipitated calcium phosphate. They consisted of bundles of needle-like crystals, whereas Ca(2+)-loaded rat liver mitochondria show only amorphous deposits of calcium phosphate under similar conditions. The very pronounced capacity of crab hepatopancreas mitochondria for transport of Ca(2+) appears to be adapted to a role in the storage and release of Ca(2+) during the molting cycle of this crustacean.
منابع مشابه
Absence of Ca2+-Induced Mitochondrial Permeability Transition but Presence of Bongkrekate-Sensitive Nucleotide Exchange in C. crangon and P. serratus
Mitochondria from the embryos of brine shrimp (Artemia franciscana) do not undergo Ca(2+)-induced permeability transition in the presence of a profound Ca(2+) uptake capacity. Furthermore, this crustacean is the only organism known to exhibit bongkrekate-insensitive mitochondrial adenine nucleotide exchange, prompting the conjecture that refractoriness to bongkrekate and absence of Ca(2+)-induc...
متن کاملReplacement of a cytosolic copper/zinc superoxide dismutase by a novel cytosolic manganese superoxide dismutase in crustaceans that use copper (haemocyanin) for oxygen transport.
The blue crab, Callinectes sapidus, which uses the copper-dependent protein haemocyanin for oxygen transport, lacks the ubiquitous cytosolic copper-dependent enzyme copper/zinc superoxide dismutase (Cu,ZnSOD) as evidenced by undetectable levels of Cu,ZnSOD activity, protein and mRNA in the hepatopancreas (the site of haemocyanin synthesis) and gills. Instead, the crab has an unusual cytosolic m...
متن کاملThe Influence of Diet Composition on Fitness of the Blue Crab, Callinectes sapidus
The physiological condition and fecundity of an organism is frequently controlled by diet. As changes in environmental conditions often cause organisms to alter their foraging behavior, a comprehensive understanding of how diet influences the fitness of an individual is central to predicting the effect of environmental change on population dynamics. We experimentally manipulated the diet of the...
متن کاملMetallothionein-like proteins in the blue crab Callinectes sapidus: effect of water salinity and ions.
The effect of water salinity and ions on metallothionein-like proteins (MTLP) concentration was evaluated in the blue crab Callinectes sapidus. MTLP concentration was measured in tissues (hepatopancreas and gills) of crabs acclimated to salinity 30 ppt and abruptly subjected to a hypo-osmotic shock (salinity 2 ppt). It was also measured in isolated gills (anterior and posterior) of crabs acclim...
متن کاملShort Communication Urate Does Not Accumulate in the Haemolymph of Exercised Blue Crabs, Calunectes Sapidus
L-Lactate, the only known anaerobic end-product in decapod crustaceans (Gade, 1983), increases haemocyanin oxygen-affinity (Tnichot, 1980; Mangum, 1983; Bridges and Morris, 1986). In exercised blue crabs, Callinectes sapidus, the decrease in haemocyanin oxygen-affinity induced by metabolic acidosis via the Bohr shift was substantially balanced by the opposing effect of L-lactate (Booth etal, 19...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 61 شماره
صفحات -
تاریخ انتشار 1974